Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Second-sphere coordination in anion binding: sodium hexaamminecobalt(III) tetrakis(4-fluorobenzoate) monohydrate

Raj Pal Sharma, ${ }^{\text {a* }}$ Ritu Bala, ${ }^{\text {a }}$ Rajni Sharma ${ }^{\text {a }}$ and Andrew D. Bond ${ }^{\text {b }}$

${ }^{\text {a }}$ Panjab University, Department of Chemistry and Centre of Advanced Studies in Chemistry, Chandigarh 160 014, India, and ${ }^{\text {b }}$ University of Southern Denmark, Department of Chemistry, Campusvej 55, 5230 Odense, Denmark
Correspondence e-mail: rpsharmapu@yahoo.co.in

Received 13 May 2005
Accepted 10 June 2005
Online 30 June 2005
In sodium hexaamminecobalt(III) tetrakis(4-fluorobenzoate) monohydrate, $\mathrm{Na}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{FO}_{2}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, determined at $180 \mathrm{~K},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ cations lie on centres of inversion and form layers in which their C_{4} axes lie perpendicular to the layer planes. 4-Fluorobenzoate anions lie on twofold axes and general positions and adopt near-planar geometries. Na^{+} cations and water molecules lie on twofold axes, forming $\left[\mathrm{NaO}_{5}\right]$ square pyramids that lie between the $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ cations. The second-sphere interactions between $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ cations and 4 -fluorobenzoate anions comprise edge-to-face and vertex-to-face arrangements. The structure is closely comparable with that of the benzoic acid salt, demonstrating that fluorination of the anion in the para position has no significant influence on the second-sphere interactions and minimal influence on the gross crystal structure.

Comment

We are currently engaged in studies to explore cobalt(III) complexes as potential anion receptors and have reported previously the crystal structures of some hexaamminecobalt(III) salts with organic sulfonate (Sharma et al., 2004) and benzoate anions (Sharma et al., 2005). The cation $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ has also been characterized previously in several

structures containing organic carboxylate anions, including $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]_{2}(\mathrm{Ox})_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Ox is oxalate; Gorol et al., 2000) and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\left(\mathrm{NpO}_{2}\right)_{2}(\mathrm{HMal})(\mathrm{Mal})\right](\mathrm{Mal})$ (Mal is malonate; Grigor'ev et al. 2004). In continuation of our interest in this
class of compounds, we describe here the crystal structure of sodium hexaamminecobalt(III) 4-fluorobenzoate monohydrate, (I) (Fig. 1).

In (I), the $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ cations lie on centres of inversion, with an approximately regular octahedral coordination geometry about atom Co1 (Table 1). There are three crystallographically distinct 4-fluorobenzoate anions: one (containing atom F1) lies on a general position, and two (containing atoms F2 and F3) lie on twofold axes; the bond distances and angles in each case are unremarkable. The dihedral angles between the least-squares plane through the six C atoms of the benzene ring and the plane of the carboxylate group are 8.6 (1), 13.4 (1) and $2.1(1)^{\circ}$ in the three distinct moieties, respectively. Similar near-planar geometry is observed for 4-fluorobenzoate or 4-fluorobenzoic acid in the relatively small number of crystal structures reported previously. Of 11 examples in the Cambridge Structural Database (November 2004 release, plus 2 updates; Allen, 2002), the maximum dihedral angle is $c a 18^{\circ}$ in the $\mathrm{Cu}^{\text {II }}$ complex salt $\left[\mathrm{Cu}\left\{\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}\right\}_{2}\right]\left(\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right)_{2}$ (Qu et al., 2004).

The $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ cations in (I) are arranged into layers parallel to the $a c$ plane, lying at $y=\frac{1}{4}$ and $y=\frac{3}{4}$. The C_{4} axes of the cations lie approximately perpendicular to the layer planes (Fig. 2). The Na^{+}cations and water molecules also lie within these layers, so that the hydrophobic and charged portions of the structure are segregated. The 4 -fluorobenzoate anions display essentially two modes of interaction with the $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ anions, namely edge-to-face and vertex-to-face (Fig. 3). In the first crystallographically distinct anion

Figure 1
The molecular units in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (ii) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$; (iv) $-x, y, \frac{1}{2}-z$; (v) $1-x, y, \frac{3}{2}-z$.]
(containing atoms O 1 and O 2), the $\mathrm{CO}_{2}{ }^{-}$group forms an edge-to-face interaction with a neighbouring $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ cation $\left[\mathrm{N} 1-\mathrm{H} 11 \cdots \mathrm{O} 1^{\mathrm{iii}}, \quad \mathrm{N} 2-\mathrm{H} 21 \cdots \mathrm{O} 2^{\text {iii }}\right.$ and $\mathrm{N} 3-$ $\mathrm{H} 31 \cdots \mathrm{O} 2^{\text {iiii }}$; symmetry code: (iii) $x, y, z-1$; Table 2]. One O atom of the same $\mathrm{CO}_{2}{ }^{-}$group (O1) also forms a vertex-to-face interaction with a second $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ cation, in which all three $\mathrm{N} \cdots \mathrm{O}$ contacts are of comparable magnitude [$\mathrm{N} 1-$ $\mathrm{H} 13 \cdots \mathrm{O} 1^{\mathrm{ii}}, \mathrm{N} 2-\mathrm{H} 23 \cdots \mathrm{O} 1$ and $\mathrm{N} 3-\mathrm{H} 32 \cdots \mathrm{O} 1^{\mathrm{ii}}$; symmetry code: (ii) $\left.\frac{1}{2}-x, \frac{1}{2}-y, 1-z\right]$. Atom O 2 also forms two opposing corners in the basal plane of the square-pyramidal twofold symmetric coordination environment of Na 1 (Table 1). In the other two crystallographically distinct 4-fluorobenzoate anions, the two O atoms of each $\mathrm{CO}_{2}{ }^{-}$group form identical interactions (related by twofold rotation axes). In the first anion, atom O 3 forms a vertex-to-face interaction comprising one clear non-hydrogen-bonded $\mathrm{N} \cdots \mathrm{O}$ contact $[\mathrm{N} 2 \cdots \mathrm{O} 3=$ 3.4419 (16) Å], one intermediate $\mathrm{N} \cdots \mathrm{O}$ contact with a bent $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ geometry $[\mathrm{N} 3 \cdots \mathrm{O} 3=3.1548(16) \AA$ and $\mathrm{N} 3-$ $\mathrm{H} 33 \cdots \mathrm{O} 3=122(2)^{\circ}$], and one clear hydrogen bond (N1$\mathrm{H} 12 \cdots \mathrm{O} 3^{\mathrm{ii}}$; Table 2). The same O atom also forms the remaining two corners of the basal plane around Na 1 . In the second anion, atom O 4 forms a more symmetrical vertex-toface interaction with $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$, comprising two clear hydrogen bonds $\left(\mathrm{N} 2-\mathrm{H} 22 \cdots \mathrm{O} 4\right.$ and $\mathrm{N} 3-\mathrm{H} 33 \cdots \mathrm{O} 4{ }^{\mathrm{ii}}$; Table 2) and one longer bent $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ contact $[\mathrm{N} 1 \cdots \mathrm{H} 12=$ 2.9533 (15) \AA and $\left.\mathrm{N} 1-\mathrm{H} 12 \cdots \mathrm{O} 4=103(1)^{\circ}\right]$.

In projection on to the plane of a single layer (Fig. 4), the $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ cations of (I) form an approximate primitive rectangular arrangement of dimensions $c a 6.5 \times 7.5 \AA$. The shorter side of the rectangular arrangement is formed by $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ cations linked via the anions containing atoms O 1 and O 2 , and the longer sides of the rectangles are linked by anions containing atoms O3 and O4. The centres of these rectangles are occupied by Na^{+}ions. The axial coordination site of Na 1 is occupied by a water molecule, which forms $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to atom O 4 (Table 2). The $\left[\mathrm{NaO}_{5}\right.$] square pyramids are situated so that the axial water molecules

Figure 2
A projection of the unit cell of (I) along the c direction, showing layers of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ cations lying parallel to the $a c$ plane at $y=\frac{1}{4}$ and $y=\frac{3}{4}$. The organic anions are interdigitated between these layers. H atoms have been omitted.
lie on twofold axes and point into the centres of the layers. Between layers, the benzene rings of the 4 -fluorobenzoate anions interdigitate in an edge-to-face manner similar to that observed in $p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{NH}_{3}{ }^{+} \cdot X^{-}$(X is Br or I) [see, for example, Klebe et al. (1983)].

The structure of (I) is closely comparable with that of the benzoate salt $\mathrm{Na}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (Sharma et al., 2005). The layers in the $a c$ plane are essentially identical in

Figure 3
The second-sphere coordination of the $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ cation in (I). The $\mathrm{CO}_{2}{ }^{-}$group containing atoms O 1 and O 2 forms an edge-to-face interaction, while the other three interactions shown are vertex-to-face. Atom Co 1 lies on a centre of inversion so that a comparable arrangement is formed on the opposite side of the plane (not shown). H atoms have been omitted. [Symmetry codes: (ii) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$; (iii) $x, y, z-1$.]

Figure 4
A projection on to the plane of a single layer, showing the approximate rectangular arrangement of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ cations, with Na^{+}cations between them. The $\left[\mathrm{NaO}_{5}\right]$ square pyramids are viewed in projection along their axial $\mathrm{Na} 1-\mathrm{O} 1 \mathrm{~W}$ vectors, which point upwards for $\left[\mathrm{NaO}_{5}\right]$ lying close to the corners of the unit cell and downwards for $\left[\mathrm{NaO}_{5}\right]$ lying close to the middle of the unit cell. H atoms have been omitted.
both cases, but the structure of (I) expands by ca $1 \AA$ along the b direction to accommodate the fluoro substituents. This demonstrates that fluorination of the benzoate anion in the para position has no significant influence on its second-sphere interactions with $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$, and minimal influence on the gross crystal structure.

Experimental

Hexaamminecobalt(III) chloride ($1 \mathrm{~g}, 0.003 \mathrm{~mol}$) was dissolved in hot water (20 ml) with mechanical stirring. In a second beaker, the sodium salt of 4-fluorobenzoic acid ($1.825 \mathrm{~g}, 0.011 \mathrm{~mol}$) was dissolved in hot water $(20 \mathrm{ml})$. These solutions were mixed and allowed to cool slowly to room temperature. After 1 d , the orange crystals which formed were filtered off and dried in air. The overall yield is quantitative (m.p. 478 K). Elemental analysis is consistent with the composition $\mathrm{Na}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left(\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}$.

Crystal data

$\mathrm{Na}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{FO}_{2}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=758.55$
Monoclinic, C2/c
$a=16.1930$ (4) \AA
$b=33.4500$ (9) \AA
$c=6.5169(2) \AA$
$\beta=112.349$ (1) ${ }^{\circ}$
$V=3264.77(16) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.543 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 6005 \\
& \quad \text { reflections } \\
& \theta=2.3-28.0^{\circ} \\
& \mu=0.62 \mathrm{~mm}^{-1} \\
& T=180(2) \mathrm{K} \\
& \text { Block, orange } \\
& 0.40 \times 0.30 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker-Nonius X8APEX-II CCD area-detector diffractometer
Thin-slice ω and φ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.699, T_{\text {max }}=0.886$
11474 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.085$
$S=1.03$
3531 reflections
269 parameters
H atoms treated by a mixture of independent and constrained refinement

> 3531 independent reflections 2909 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.019$
> $\theta_{\max }=28.0^{\circ}$
> $h=-20 \rightarrow 18$
> $k=-40 \rightarrow 44$
> $l=-7 \rightarrow 8$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0506 P)^{2}\right. \\
& +1.8227 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\max }=0.58 \mathrm{e}^{\text {A }}{ }^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}
\end{aligned}
$$

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 12 \cdots 3^{\text {ii }}$	0.87 (1)	2.11 (1)	2.8962 (15)	150 (2)
$\mathrm{N} 1-\mathrm{H} 11 \cdots \mathrm{O} 1^{\text {iii }}$	0.87 (1)	2.27 (1)	3.1000 (16)	159 (2)
$\mathrm{N} 1-\mathrm{H} 13 \cdots \mathrm{O} 1^{\text {ii }}$	0.88 (1)	2.06 (1)	2.9124 (16)	163 (2)
$\mathrm{N} 2-\mathrm{H} 21 \cdots \mathrm{O} 2^{\text {iii }}$	0.88 (1)	2.38 (2)	3.1357 (15)	144 (2)
$\mathrm{N} 2-\mathrm{H} 22 \cdots \mathrm{O} 4$	0.88 (1)	2.20 (1)	3.0108 (16)	153 (2)
$\mathrm{N} 2-\mathrm{H} 23 \cdots \mathrm{O} 1$	0.87 (1)	2.16 (1)	2.9867 (16)	158 (2)
N3-H31 \cdots O2 $2^{\text {iii }}$	0.88 (1)	2.10 (1)	2.9730 (15)	174 (2)
$\mathrm{N} 3-\mathrm{H} 32 \cdots \mathrm{O} 1^{\text {ii }}$	0.88 (1)	2.35 (1)	3.1335 (16)	149 (2)
N3-H33 \cdots O $4^{\text {ii }}$	0.86 (1)	2.43 (2)	3.0481 (16)	129 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O}^{\text {ii }}$	0.84 (2)	2.04 (2)	2.8519 (14)	163 (2)

H atoms bound to C atoms were placed in calculated positions and allowed to ride during subsequent refinement, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) . \mathrm{H}$ atoms of the NH_{3} groups were located in difference Fourier maps and refined with isotropic displacement parameters. All nine independent $\mathrm{N}-\mathrm{H}$ bond lengths were restrained to a common refined value with an s.u. of $0.01 \AA$. The single unique H atom of the water molecule was also located in a difference Fourier map and was refined isotropically without restraint.

Data collection: APEX2 (Bruker-Nonius, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

RB and RPS gratefully acknowledge the financial support of the CSIR, India [grant No. 01(1768)/02/EMR-II]. ADB is grateful to the Danish Natural Science Research Council (SNF) and Carlsbergfondet (Denmark) for provision of the X-ray equipment.

[^0]
References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (2003). SAINT. Version 7.06a. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker-Nonius (2003). APEX2. Version 1.0-8. Bruker-Nonius BV, Delft, The Netherlands.
Gorol, M., Mosch-Zanetti, N. C., Noltemeyer, M. \& Roesky, H. W. (2000). Z. Anorg. Allg. Chem. 626, 2318-2324.
Grigor'ev, M. S., Charushnikova, I. A., Starikova, Z. A., Krot, N. N. \& Polyakova, I. N. (2004). Radiochemistry, 46, 232-235.
Klebe, G., Krishnan, V. G., Weiss, A. \& Fuess, H. (1983). Eur. Crystallogr. Meet. 8, 245.
Qu, Y., You, Z.-L., Liu, Z.-D., Zhu, H.-L. \& Tan, M.-Y. (2004). Acta Cryst. E60, m1187-1188.
Sharma, R. P., Bala, R., Sharma, R., Kariuki, B. M., Rychlewska, U. \& Warzajtisc, B. (2005). J. Mol. Struct. 748, 143-151.
Sharma, R. P., Bala, R., Sharma, R. \& Venugopalan, P. (2004). J. Mol. Struct. 694, 229-234.
Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.

[^1]Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{N} 1$	$1.9510(12)$	$\mathrm{Na} 1-\mathrm{O} 3$	$2.3444(10)$
$\mathrm{Co} 1-\mathrm{N} 3$	$1.9562(12)$	$\mathrm{Na} 1-\mathrm{O} 2$	$2.3861(10)$
$\mathrm{Co} 1-\mathrm{N} 2$	$1.9643(13)$	$\mathrm{Na} 1-\mathrm{O} 1 W$	$2.4834(19)$
$\mathrm{O} 3-\mathrm{Na} 1-\mathrm{O} 3^{\mathrm{i}}$	$177.34(6)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 3$	$91.93(5)$
$\mathrm{O} 3-\mathrm{Na} 1-\mathrm{O} 2$	$95.66(4)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{ii}}$	180.0
$\mathrm{O} 3-\mathrm{Na} 1-\mathrm{O} 2^{\mathrm{i}}$	$85.08(4)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{ii}}$	180.0
$\mathrm{O} 2-\mathrm{Na} 1-\mathrm{O} 2^{\mathrm{i}}$	$147.85(6)$	$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 3^{\mathrm{ii}}$	180.0
$\mathrm{O} 3-\mathrm{Na} 1-\mathrm{O} 1 W$	$88.67(3)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{ii}}$	$90.39(5)$
$\mathrm{O} 2-\mathrm{Na} 1-\mathrm{O} 1 W$	$106.07(3)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 3^{\mathrm{ii}}$	$91.94(5)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2$	$89.61(5)$	$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{ii}}$	$88.07(5)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 3$	$88.06(5)$		
Symmetry codes: (i) $-x, y, \frac{3}{2}-z ;\left(\right.$ ii) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$.			

Selected geometric parameters (A, ${ }^{\circ}$).

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: BG1006). Services for accessing these data are described at the back of the journal.

[^1]: Symmetry codes: (i) $-x, y, \frac{3}{2}-z$; (ii) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$.

